Saturday, 5 August 2017

Filtro médio móvel de 3ª ordem


Processamento de sinal Filtros digitais Os filtros digitais são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de resposta de Implulgação finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em volta desse ponto do meio para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, o que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos Editar modelo médio móvel (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que explica a banda de passagem do filtro. Filtros Integrator-Comb (CIC) em cascata Edit A O filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média de amostras R M. Sua função de transferência é assim dada por: os filtros CIC são usados ​​para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal a uma freqüência mais baixa, descartando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtro médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, não usando multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal pelos bits log 2 (R) (R). Filtros canônicos Edit Canonical filters implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de elementos de som. De forma semelhante às estruturas canónicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração em coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros de salto. Cadeia de secções de segunda ordem Editar uma seção de segunda ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware exigido, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto analógico ativo. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro de 4passões de allpass do allpass do pólo pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transferir Função A representação do espaço de estado do filtro precedente pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, as ferramentas de processamento de sinais, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo em uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive Filters (AR) Edit Autoregressive Filters (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados ​​usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados ​​por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até que o receba. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada: filtro exponencial Esta página descreve a filtragem exponencial, o filtro mais simples e popular. Esta é parte da seção Filtragem que faz parte de um Guia de Detecção e Diagnóstico de Falhas. Visão geral, constante de tempo e equivalente analógico. O filtro mais simples é o filtro exponencial. Possui apenas um parâmetro de sintonia (diferente do intervalo de amostra). Exige o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (autoregressivo) - os efeitos de uma mudança de entrada se deterioram exponencialmente até que os limites de exibição ou a aritmética do computador ocultem. Em várias disciplinas, o uso deste filtro também é referido como o alívio exponencial de 82208221. Em algumas disciplinas, como a análise de investimentos, o filtro exponencial é chamado de Média de Movimento 8220 Exponencialmente Ponderada8221 (EWMA), ou apenas 8220 de Média de Mudança Exponencial8221 (EMA). Isso abusa a tradicional terminologia média média ARMA 8220moo 8221 da análise de séries temporais, uma vez que não há histórico de entrada que é usado - apenas a entrada atual. É o equivalente de tempo discreto da ordem de ordem 8220 lag8221 comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Nos circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Ao enfatizar a analogia com os circuitos analógicos, o parâmetro de sintonia única é a constante 8220time8221, geralmente escrita como a letra grega minúscula Tau (). De fato, os valores nos tempos de amostra discretos coincidem exatamente com o atraso de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações de filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 para que a saída corresponda à entrada no estado estacionário. Seguindo a notação de filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no passo de tempo ky (k) é a saída filtrada no tempo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a vezes é chamado de constante de deslocamento 82208221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o desenvolvedor do aplicativo especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro geralmente é inicializada para coincidir com a primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, portanto, não há filtragem 8211, a saída é igual à nova entrada. À medida que a constante de tempo é muito grande, um aborda 1, de modo que a entrada nova é quase ignorada 8211 filtragem muito pesada. A equação do filtro acima pode ser rearranjada no seguinte preditor-corretor equivalente: Este formulário torna mais evidente que a estimativa variável (saída do filtro) é predita como inalterada da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) e a predição y (k-1). Este formulário também é o resultado de derivar o filtro exponencial como um caso especial simples de um filtro de Kalman. Qual é a solução ideal para um problema de estimativa com um determinado conjunto de pressupostos. Etapa de resposta Uma maneira de visualizar a operação do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada de etapa. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é de repente mudado para 1. Os valores resultantes são traçados abaixo: no gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa prever com mais facilidade Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro sobe para 63.21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 de seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95.02, 98.17 e 99.33 do valor final, respectivamente. Uma vez que o filtro é linear, isso significa que essas porcentagens podem ser usadas para qualquer magnitude da mudança de passo, não apenas pelo valor de 1 usado aqui. Embora a resposta gradual em teoria tenha um tempo infinito, do ponto de vista prático, pense no filtro exponencial como 98 a 99 8220done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado 8220nonlinear exponencial filter8221 Weber, 1980. destinado a pesadamente filtrar o ruído dentro de uma certa amplitude 8220typical8221, mas depois responder mais rapidamente a mudanças maiores. Copyright 2010 - 2013, Greg Stanley Compartilhar esta página: Preciso projetar um filtro de média móvel que tenha uma freqüência de corte de 7.8 Hz. Eu usei filtros de média móvel antes, mas, na medida em que eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso se relaciona com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e estou trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho médio da janela de filtro móvel de 130 amostras, ou há algo mais que eu estou faltando aqui? 18 de julho 13 às 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O som adicionado e também para fins de suavização, mas se você usar o mesmo filtro de média móvel no domínio de freqüência para a separação de freqüência, o desempenho será o pior. Então, nesse caso, use filtros de domínio de freqüência ndash user19373 3 de fevereiro 16 às 5:53 O filtro de média móvel (às vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, afirmado de forma diferente: lembrando que uma resposta de freqüência de sistemas de tempo discreto É igual à transformação de Fourier de tempo discreto de sua resposta de impulso, podemos calcular da seguinte maneira: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (omega). Usando algumas manipulações simples, podemos obter isso de forma mais fácil de entender: isso pode não parecer mais fácil de entender. No entanto, devido à identidade do Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse anteriormente, o que você realmente está preocupado é a magnitude da resposta de freqüência. Então, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Podemos soltar os termos exponenciais porque eles não afetam a magnitude do resultado e 1 para todos os valores de omega. Uma vez que xy xy para dois números complexos finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta global de magnitude (em vez disso, eles afetam a resposta de fase de sistemas). A função resultante dentro dos suportes de magnitude é uma forma de um kernel Dirichlet. Às vezes, é chamado de função periódica sinc, porque se parece com a função sinc algo em aparência, mas é periodicamente. De qualquer forma, uma vez que a definição de frequência de corte é pouco especificada (ponto -3 dB -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Ajuste H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina omega igual à frequência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se de que omega 2pi frac, onde fs é a taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Esse deve ser o comprimento da sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erros Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui, finalmente, qual era a abordagem seguida. O resultado baseou-se na aproximação do espectro de amplitude MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aprox. 1 (frac - frac) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac, multiplicando Omega por um coeficiente de obtenção de MA (Omega) aproximadamente 10.907523 (frac-frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Todo o acima se relaciona com a frequência de corte -3dB, o assunto desta publicação. Às vezes, é interessante obter um perfil de atenuação em stop-band que é comparável ao de um filtro de passagem baixa IIR de 1ª ordem (LPF de um único pólo) com uma freqüência de corte de -3dB dada (como um LPF também é chamado de integrador vazado, Tendo um pólo não exatamente na DC, mas perto disso). De fato, tanto o MA quanto o LPR de 1ª ordem IIR têm uma inclinação de -20dBdecade na banda de parada (um precisa de um N maior do que o usado na figura, N32, para ver isso), mas enquanto o MA tem nulos espectrales no FkN e um Por um lado, o filtro IIR possui apenas um perfil 1f. Se alguém quiser obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR e corresponda às freqüências de corte 3dB para serem iguais, ao comparar os dois espectros, ele perceberia que a ondulação da faixa de parada do filtro MA termina 3dB abaixo do do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR, as fórmulas podem ser modificadas da seguinte forma: encontrei o script Mathematica onde eu calculava o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com o MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1 quadrado a partir daí. Ndash Massimo 17 jan 16 às 2:08

No comments:

Post a Comment